If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6^2+9^2=c^2
We move all terms to the left:
6^2+9^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+117=0
a = -1; b = 0; c = +117;
Δ = b2-4ac
Δ = 02-4·(-1)·117
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{13}}{2*-1}=\frac{0-6\sqrt{13}}{-2} =-\frac{6\sqrt{13}}{-2} =-\frac{3\sqrt{13}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{13}}{2*-1}=\frac{0+6\sqrt{13}}{-2} =\frac{6\sqrt{13}}{-2} =\frac{3\sqrt{13}}{-1} $
| x^2=6x+5=0 | | 5x+5x+90=360 | | 5^2+6^2=c^2 | | 1/4m=-12 | | 4-3(x+3)=5x-13 | | 3(3x+10=7(x+1) | | 4^2+6^2=c^2 | | x(x+18)=(x+9)(x+9) | | 8x-24-6-3x=(-x+2)-5(5-x) | | 3(x+10=7(x+1) | | 5x-2x+7=11 | | 3(x+10=7(x+10 | | 5x^2=145x | | 5/13=t+6/13 | | 26-n=17 | | 7x+3=4x+1=65 | | 3x+(x-27)+(x+85)=203 | | 5-1(4x-15)=3(-6x-12) | | 4x-1=(12/5) | | 4,085=43(p+20) | | 7x+3=4x+165 | | 4m-7=4m-2-m | | -x/15=-8 | | 13+3=t | | 6n-5n=18 | | -5/6x-7/30x+1/5=-52 | | 8(-3d+2=88 | | MA=X,mB=2X.mC=2X+30 | | 52x+12x=1912+92x | | 3x+4+2x=1 | | 3m=5(m+3)-5 | | 10x+35-8=57 |